Примеры решения уравнений: логарифм с переменным основанием
Предметы
Специализации
- Подготовка к ЕГЭ по математике (базовый уровень)
- Репетитор по химии для подготовки к ОГЭ
- Подготовка к олимпиадам по химии
- Репетитор по английскому языку для подготовки к ЕГЭ
- Репетитор по грамматике английского языка
- Репетитор по английскому для взрослых
- Репетитор по географии для подготовки к ОГЭ
- Репетитор по информатике для подготовки к ОГЭ
- Репетитор по информатике для подготовки к ЕГЭ
- Scratch
Примеры решения уравнений с логарифмами с переменным основанием.
Пример 1. Найдите \(x:\) \(\log _2\left(x+1\right)=\log _3\left(27\right)\).
Решение:
\(\log _2\left(x+1\right)=\log _3\left(27\right)\)
Используем свойство логарифма: \(a=\log _b\left(b^a\right)\)
\(\log _3\left(27\right)=\log _2\left(2^{\log _3\left(27\right)}\right)=\log _2\left(8\right)\)
\(\log _2\left(x+1\right)=\log _2\left(8\right)\)
\(x+1=8\)\(-->x=7\)
Ответ:\(x=7\).
Пример 2. Найдите \(x:\) \(\ln \left(x+2\right)-\ln \left(x+1\right)=1\).
Решение:
\(\ln \left(x+2\right)-\ln \left(x+1\right)=1\)
Прибавим к обоим частям \(\ln \left(x+1\right)\):
\(\ln \left(x+2\right)-\ln \left(x+1\right)+\ln \left(x+1\right)=1+\ln \left(x+1\right)\)
\(\ln \left(x+2\right)=1+\ln \left(x+1\right)\)
Применим свойство \(\:a=\log _b\left(b^a\right)\), так как \(1=\ln \left(e^1\right)=\ln \left(e\right)\):
\(\ln \left(x+2\right)=\ln \left(e\right)+\ln \left(x+1\right)\)
\(x+2=e\left(x+1\right)\)
\(\:x+2=e\left(x+1\right)-->x(1-e)=e-2-->\quad x=\frac{e-2}{-e+1}\)
Ответ: \(x=\frac{e-2}{-e+1}\).
Пример 3. Найдите \(x:\) \(4+\log _3\left(7x\right)=10\) .
Решение:
\(4+\log _3\left(7x\right)=10\)
Вычтем от обоих частей равенства \(4\):
\(4+\log _3\left(7x\right)-4=10-4\)
\(\log _3\left(7x\right)=6\)
Применим свойство \(\:a=\log _b\left(b^a\right)-->\) \(6=\log _3\left(3^6\right)=\log _3\left(729\right)\)
\(\log _3\left(7x\right)=\log _3\left(729\right)\)
\(7x=729-->\quad x=\frac{729}{7}\)
Ответ: \(x=\frac{729}{7}\).
Пример 4. Найдите \(x:\) \(\log _2\left(x^2-6x\right)=3+\log _2\left(1-x\right)\) .
Решение:
\(\log _2\left(x^2-6x\right)=3+\log _2\left(1-x\right)\)
Применим свойство \(\:a=\log _b\left(b^a\right)\)
\(3=\log _2\left(2^3\right)=\log _2\left(8\right)\)
\(\log _2\left(x^2-6x\right)=\log _2\left(8\right)+\log _2\left(1-x\right)\)
Применим свойство \(\log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)\)
\(\log _2\left(x^2-6x\right)=\log _2\left(8\left(1-x\right)\right)\)
\(x^2-6x=8\left(1-x\right)\)
\(x=2,\:x=-4\)
Ответ: \(x=2,\:x=-4\).
Наши преподаватели
Репетитор по математике
Стаж (лет)
30
Образование:
Талдыкурганский педагогический институт им. Джансугурова
Проведенных занятий:
233
Форма обучения:
Дистанционно (Скайп)
Репетитор по математике
Стаж (лет)
10
Образование:
Столичный центр переподготовки г. Москвы
Проведенных занятий:
259
Форма обучения:
Дистанционно (Скайп)
Репетитор по математике
Стаж (лет)
21
Образование:
Челябинский государственный педагогический университет
Проведенных занятий:
2578
Форма обучения:
Дистанционно (Скайп)
Похожие статьи
- Модуль числа (Часть 1)
- Графики кубических функций
- Как округлить число до тысячных?
- РУДН: факультет Психологии (отзывы,проходной балл, стоимость обучения)
- Как решать показательно-степенные уравнения
- Учимся решать задачи на координатной решетке
- Тренируемся решать задачи с прикладным содержанием
- Обзор стильных и недорогих смарт-часов